d-Serine
Neurotransmitters

Author: Gianpiero Pescarmona
Date: 09/01/2020

Description

Purification of serine racemase: Biosynthesis of the neuromodulator d-serine, 1999

Restoration of visual performance by D-serine in models of inner and outer retinal dysfunction assessed using sweep VEP measurements in the conscious rat and rabbit, 2015

Metabolism of the neuromodulator D-serine, 2010

  • Abstract
    Over the past years, accumulating evidence has indicated that D-serine is the endogenous ligand for the glycine-modulatory binding site on the NR1 subunit of N-methyl-D-aspartate receptors in various brain areas. D-Serine is synthesized in glial cells and neurons by the pyridoxal-5′ phosphate-dependent enzyme serine racemase, and it is released upon activation of glutamate receptors. The cellular concentration of this novel messenger is regulated by both serine racemase isomerization and elimination reactions, as well as by its selective degradation catalyzed by the flavin adenine dinucleotide-containing flavoenzyme D-amino acid oxidase. Here, we present an overview of the current knowledge of the metabolism of D-serine in human brain at the molecular and cellular levels, with a specific emphasis on the brain localization and regulatory pathways of D-serine, serine racemase, and D-amino acid oxidase. Furthermore, we discuss how D-serine is involved with specific pathological conditions related to N-methyl-D-aspartate receptors over- or down-regulation.

Abbreviations
Aβ:
Amyloid β-peptide

AD:
Alzheimer’s disease

AMPA:
α-Amino-3-hydroxy-5-methylisooxazole-4-propionic acid

CNS:
Central nervous system

CP:
Choroid plexus

CSF:
Cerebrospinal fluid

DAAO:
D-Amino acid oxidase (EC 1.4.3.3)

D-DOPA:
D-3,4-Dihydroxyphenylalanine

DPFC:
Dorsolateral prefrontal cortex

FAD:
Flavin adenine dinucleotide

Golga3:
Golgin subfamily A member

GRIP:
Glutamate receptor interacting protein

PDZ:
PSD95/disc large/ZO-1

PICK1:
Protein interacting with C kinase 1

PIP2:
Phosphatidylinositol(4,5)biphosphate

PLP:
Pyridoxal-5′ phosphate

NMDAR:
N-methyl-D-aspartate receptor

NO:
Nitric oxide

SR:
Serine racemase (EC 5.1.1.18)

References
1.
Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66:635–643

CAS
PubMed
Google Scholar
2.
Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 96:721–725

CAS
PubMed
Google Scholar
3.
Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

CAS
PubMed
Google Scholar
4.
Danysz W, Parsons CG (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

CAS
PubMed
Google Scholar
5.
Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

CAS
PubMed
Google Scholar
6.
Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

CAS
PubMed
Google Scholar
7.
Ribeiro CS, Reis M, Panizzutti R, de Miranda J, Wolosker H (2002) Glial transport of the neuromodulator D-serine. Brain Res 929:202–209

CAS
PubMed
Google Scholar
8.
Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci USA 102:5606–5611

CAS
PubMed
Google Scholar
9.
Martineau M, Galli T, Baux G, Mothet JP (2008) Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission. Glia 56:1271–1284

PubMed
Google Scholar
10.
Oliet SH, Mothet JP (2009) Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158:275–283

CAS
PubMed
Google Scholar
11.
Yasuda E, Ma N, Semba R (2001) Immunohistochemical demonstration of L-serine distribution in the rat brain. Neuroreport 12:1027–1030

CAS
PubMed
Google Scholar
12.
Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 281:14151–14162

CAS
PubMed
Google Scholar
13.
Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53:401–411

PubMed
Google Scholar
14.
Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB (2007) Functional and molecular analysis of D-serine transport in retinal Müller cells. Exp Eye Res 84:191–199

CAS
PubMed
Google Scholar
15.
Shao Z, Kamboj A, Anderson CM (2009) Functional and immunocytochemical characterization of D-serine transporters in cortical neuron and astrocyte cultures. J Neurosci Res 87:2520–2530

CAS
PubMed
Google Scholar
16.
Helboe L, Egebjerg J, Møller M, Thomsen C (2003) Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18:2227–2238

PubMed
Google Scholar
17.
Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H, Tsukada S, Ooigawa H, Nawashiro H, Kobayashi Y, Fukuda J, Endou H (2004) High affinity D- and L-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 358:123–126

CAS
PubMed
Google Scholar
18.
Xie X, Dumas T, Tang L, Brennan T, Reeder T, Thomas W, Klein RD, Flores J, O’Hara BF, Heller HC, Franken P (2005) Lack of the alanine–serine–cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice. Brain Res 1052:212–221

CAS
PubMed
Google Scholar
19.
Schell MJ (2004) The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 359:943–964

CAS
PubMed
Google Scholar
20.
Martineau M, Baux G, Mothet JP (2006) D-Serine signalling in the brain: friend and foe. Trends Neurosci 29:481–491

CAS
PubMed
Google Scholar
21.
Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA 100:15194–15199

CAS
PubMed
Google Scholar
22.
Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM (2006) Age-related effects of the neuromodulator D-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 98:1159–1166

CAS
PubMed
Google Scholar
23.
Panatier A, Theodosis DT, Mothet J-P, Touquet B, Pollegioni L, Poulain DA, Oliet SHR (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

CAS
PubMed
Google Scholar
24.
Strísovský K, Jirásková J, Barinka C, Majer P, Rojas C, Slusher BS, Konvalinka J (2003) Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate. FEBS Lett 535:44–48

PubMed
Google Scholar
25.
Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular D-serine levels through an alpha, beta-elimination activity. J BiolChem 280:1754–1763

CAS
Google Scholar
26.
Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

CAS
PubMed
Google Scholar
27.
Panizzutti R, De Miranda J, Ribeiro CS, Engelender S, Wolosker H (2001) A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase. Proc Natl Acad Sci USA 98:5294–5299

CAS
PubMed
Google Scholar
28.
De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci USA 99:14542–14547

PubMed
Google Scholar
29.
Cook SP, Galve-Roperh I, Martínez del Pozo A, Rodríguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277:27782–27792

CAS
PubMed
Google Scholar
30.
Neidle A, Dunlop DS (2002) Allosteric regulation of mouse brain serine racemase. Neurochem Res 27:1719–1724

CAS
PubMed
Google Scholar
31.
Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Brain Res Mol Brain Res 133:208–214

CAS
PubMed
Google Scholar
32.
Strísovský K, Jirásková J, Mikulová A, Rulísek L, Konvalinka J (2005) Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry 44:13091–13100

PubMed
Google Scholar
33.
De Miranda J, Santoro A, Engelender S, Wolosker H (2000) Human serine racemase: molecular cloning, genomic organization and functional analysis. Gene 256:183–188

PubMed
Google Scholar
34.
Xia M, Liu Y, Figueroa DJ, Chiu CS, Wei N, Lawlor AM, Lu P, Sur C, Koblan KS, Connolly TM (2004) Characterization and localization of a human serine racemase. Brain Res Mol Brain Res 125:96–104

CAS
PubMed
Google Scholar
35.
Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y, Toyoshima M, Okuno A, Takao H, Toyota T, Minabe Y, Nakamura K, Shimizu E, Itokawa M, Mori N, Iyo M, Yoshikawa T (2005) Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels. Biol Psychiatry 57:1493–1503

CAS
PubMed
Google Scholar
36.
Hoffman HE, Jirásková J, Ingr M, Zvelebil M, Konvalinka J (2009) Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif 63:62–67

CAS
PubMed
Google Scholar
37.
Baumgart F, Mancheño JM, Rodríguez-Crespo I (2007) Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP. FEBS J 274:4561–4571

CAS
PubMed
Google Scholar
38.
Baumgart F, Rodríguez-Crespo I (2008) D-amino acids in the brain: the biochemistry of brain serine racemase. FEBS J 275:3538–3545

CAS
PubMed
Google Scholar
39.
Pilone MS (2000) D-Amino acid oxidase: new findings. Cell Mol Life Sci 57:1732–1747

CAS
PubMed
Google Scholar
40.
Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

CAS
PubMed
Google Scholar
41.
Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29:1620–1644

CAS
PubMed
Google Scholar
42.
Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free D-serine in rat brain. FEBS Lett 296:33–36

CAS
PubMed
Google Scholar
43.
Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T, Takahashi K (1993) Free D-serine, D-aspartate and D-alanine in central nervous system and serum in mutant mice lacking D-amino acid oxidase. Neurosci Lett 152:33–36

CAS
PubMed
Google Scholar
44.
Nagata Y, Yamamoto K, Shimojo T, Konno R, Yasumura Y, Akino T (1992) The presence of free D-alanine, D-proline and D-serine in mice. Biochim Biophys Acta 1115:208–211

CAS
PubMed
Google Scholar
45.
Nagata Y, Horiike K, Maeda T (1994) Distribution of free D-serine in vertebrate brains. Brain Res 634:291–295

CAS
PubMed
Google Scholar
46.
Konno R (2001) Assignment of D-amino-acid oxidase gene to a human and a mouse chromosome. Amino Acids 20:401–408

CAS
PubMed
Google Scholar
47.
Momoi K, Fukui K, Watanabe F, Miyake Y (1988) Molecular cloning and sequence analysis of cDNA encoding human kidney D-amino acid oxidase. FEBS Lett 238:180–184

CAS
PubMed
Google Scholar
48.
Romano D, Molla G, Pollegioni L, Marinelli F (2009) Optimization of human D-amino acid oxidase expression in Escherichia coli. Protein Expr Purif 68:72–78

CAS
PubMed
Google Scholar
49.
Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Pollegioni L (2006) Characterization of human D-amino acid oxidase. FEBS Lett 580:2358–2364

CAS
PubMed
Google Scholar
50.
Caldinelli L, Molla G, Sacchi S, Pilone MS, Pollegioni L (2009) Relevance of weak flavin binding in human D-amino acid oxidase. Protein Sci 18:801–810

CAS
PubMed
Google Scholar
51.
Kawazoe T, Tsuge H, Imagawa T, Aki K, Kuramitsu S, Fukui K (2007) Structural basis of D-DOPA oxidation by D-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun 355:385–391

CAS
PubMed
Google Scholar
52.
Kawazoe T, Tsuge H, Pilone MS, Fukui K (2006) Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 15:2708–2717

CAS
PubMed
Google Scholar
53.
Mattevi A, Vanoni MA, Todone F, Rizzi M, Teplyakov A, Coda A, Bolognesi M, Curti B (1996) Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2. Proc Natl Acad Sci USA 93:7496–7501

CAS
PubMed
Google Scholar
54.
Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, Miura R (1996) Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 Å resolution. J Biochem 120:14–17

CAS
PubMed
Google Scholar
55.
Shoji K, Mariotto S, Ciampa AR, Suzuki H (2006) Regulation of serine racemase activity by D-serine and nitric oxide in human glioblastoma cells. Neurosci Lett 392:75–78

CAS
PubMed
Google Scholar
56.
Shoji K, Mariotto S, Ciampa AR, Suzuki H (2006) Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Neurosci Lett 394:163–167

CAS
PubMed
Google Scholar
57.
Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK, Amzel LM, Snyder SH (2007) Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation. Proc Natl Acad Sci USA 104:2950–2955

CAS
PubMed
Google Scholar
58.
Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 102:2105–2110

CAS
PubMed
Google Scholar
59.
Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702

CAS
PubMed
Google Scholar
60.
Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A (2006) Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11:150–157

CAS
PubMed
Google Scholar
61.
Pan L, Wu H, Shen C, Shi Y, Jin W, Xia J, Zhang M (2007) Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes. EMBO J 26:4576–4587

CAS
PubMed
Google Scholar
62.
Hikida T, Mustafa AK, Maeda K, Fujii K, Barrow RK, Saleh M, Huganir RL, Snyder SH, Hashimoto K, Sawa A (2008) Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 63:997–1000

CAS
PubMed
Google Scholar
63.
Dumin E, Bendikov I, Foltyn VN, Misumi Y, Ikehara Y, Kartvelishvily E, Wolosker H (2006) Modulation of D-serine levels via ubiquitin-dependent proteasomal degradation of serine racemase. J Biol Chem 281:20291–20302

CAS
PubMed
Google Scholar
64.
Balan L, Foltyn VN, Zehl M, Dumin E, Dikopoltsev E, Knoh D, Ohno Y, Kihara A, Jensen ON, Radzishevsky IS, Wolosker H (2009) Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc NatlAcad Sci USA 106:7589–7594

CAS
Google Scholar
65.
Mustafa AK, van Rossum DB, Patterson RL, Maag D, Ehmsen JT, Gazi SK, Chakraborty A, Barrow RK, Amzel LM, Snyder SH (2009) Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition. Proc Natl Acad Sci USA 106:2921–2926

CAS
PubMed
Google Scholar
66.
Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

CAS
PubMed
Google Scholar
67.
Liu X, He G, Wang X, Chen Q, Qian X, Lin W, Li D, Gu N, Feng G, He L (2004) Association of DAAO with schizophrenia in the Chinese population. Neurosci Lett 369:228–233

CAS
PubMed
Google Scholar
68.
Molla G, Bernasconi M, Sacchi S, Pilone MS, Pollegioni L (2006) Expression in Escherichia coli and in vitro refolding of the human protein pLG72. Protein Expr Purif 46:150–155

CAS
PubMed
Google Scholar
69.
Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283:22244–22256

CAS
PubMed
Google Scholar
70.
Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA (2008) Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatry 13:685–696

CAS
PubMed
Google Scholar
71.
Otte DM, Bilkei-Gorzó A, Filiou MD, Turck CW, Yilmaz O, Holst MI, Schilling K, Abou-Jamra R, Schumacher J, Benzel I, Kunz WS, Beck H, Zimmer A (2009) Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 19:339–348

CAS
PubMed
Google Scholar
72.
Konno R (2003) Rat cerebral serine racemase: amino acid deletion and truncation at carboxy terminus. Neurosci Lett 349:111–114

CAS
PubMed
Google Scholar
73.
Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW (2004) Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 1:2. doi:10.1186/1742-2094-1-2

PubMed
Google Scholar
74.
Yoshikawa M, Nakajima K, Takayasu N, Noda S, Sato Y, Kawaguchi M, Oka T, Kobayashi H, Hashimoto A (2006) Expression of the mRNA and protein of serine racemase in primary cultures of rat neurons. Eur J Pharmacol 548:74–76

CAS
PubMed
Google Scholar
75.
Yoshikawa M, Takayasu N, Hashimoto A, Sato Y, Tamaki R, Tsukamoto H, Kobayashi H, Noda S (2007) The serine racemase mRNA is predominantly expressed in rat brain neurons. Arch Histol Cytol 70:127–134

CAS
PubMed
Google Scholar
76.
Dun Y, Duplantier J, Roon P, Martin PM, Ganapathy V, Smith SB (2008) Serine racemase expression and D-serine content are developmentally regulated in neuronal ganglion cells of the retina. J Neurochem 104:970–978

CAS
PubMed
Google Scholar
77.
Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 100:6789–6794

CAS
PubMed
Google Scholar
78.
Wolosker H, Dumin E, Balan L, Foltyn VN (2008) D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526

CAS
PubMed
Google Scholar
79.
Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654

CAS
PubMed
Google Scholar
80.
Hepner F, Pollak A, Ulfig N, Yae-Kyung M, Lubec G (2005) Mass spectrometrical analysis of human serine racemase in foetal brain. J Neural Transm 112:805–811

CAS
PubMed
Google Scholar
81.
Neims AH, Zieverink WD, Smilack JD (1966) Distribution of D-amino acid oxidase in bovine and human nervous tissues. J Neurochem 13:163–168

CAS
PubMed
Google Scholar
82.
Goldstein DB (1966) D-amino acid oxidase in brain: distribution in several species and inhibition by pentobarbitone. J Neurochem 13:1011–1016

CAS
PubMed
Google Scholar
83.
Arnold G, Liscum L, Holtzman E (1979) Ultrastructural localization of D-amino acid oxidase in microperoxisomes of the rat nervous system. J Histochem Cytochem 27:735–745

CAS
PubMed
Google Scholar
84.
Horiike K, Tojo H, Arai R, Yamano T, Nozaki M, Maeda T (1987) Localization of D-amino acid oxidase in Bergmann glial cells and astrocytes of rat cerebellum. Brain Res Bull 19:587–596

CAS
PubMed
Google Scholar
85.
Horiike K, Tojo H, Arai R, Nozaki M, Maeda T (1994) D-amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes. Brain Res 652:297–303

CAS
PubMed
Google Scholar
86.
Kappor R, Kapoor V (1997) Distribution of D-amino acid oxidase (DAO) activity in the medulla and thoracic spinal cord of the rat: implications for a role for D-serine in autonomic function. Brain Res 771:351–355

CAS
PubMed
Google Scholar
87.
Moreno S, Nardacci R, Cimini A, Cerù MP (1999) Immunocytochemical localization of D-amino acid oxidase in rat brain. J Neurocytol 28:169–185

CAS
PubMed
Google Scholar
88.
Urai Y, Jinnouchi O, Kwak KT, Suzue A, Nagahiro S, Fukui K (2002) Gene expression of D-amino acid oxidase in cultured rat astrocytes: regional and cell type specific expression. Neurosci Lett 324:101–104

CAS
PubMed
Google Scholar
89.
Cristiano L, Bernardo A, Cerù MP (2001) Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 30:671–683

CAS
PubMed
Google Scholar
90.
Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, Burnet PW (2007) D-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669

PubMed
Google Scholar
91.
Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, Abou El-Magd RM, Yorita K, Okano M, Watanabe T, Sano N, Bando Y, Arima K, Sakai T, Fukui K (2009) Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347

CAS
PubMed
Google Scholar
92.
Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW, Patel S (2007) Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating D-serine reuptake in the mouse CNS. Eur J Neurosci 25:1757–1766

PubMed
Google Scholar
93.
Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino acid oxidase activity. J Chromatogr B Biomed Sci Appl 757:119–125

CAS
PubMed
Google Scholar
94.
Wu S, Basile AS, Barger SW (2007) Induction of serine racemase expression and D-serine release from microglia by secreted amyloid precursor protein (sAPP). Curr Alzheimer Res 4:243–251

PubMed
Google Scholar
95.
Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1–42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28:14486–14491

CAS
PubMed
Google Scholar
96.
Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M, Aiso S (2007) D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 26:4149–4159

CAS
PubMed
Google Scholar
97.
Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A (2004) Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Ther 311:836–844

CAS
PubMed
Google Scholar
98.
Katsuki H, Watanabe Y, Fujimoto S, Kume T, Akaike A (2007) Contribution of endogenous glycine and D-serine to excitotoxic and ischemic cell death in rat cerebrocortical slice cultures. Life Sci 81:740–749

CAS
PubMed
Google Scholar
99.
Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

CAS
PubMed
Google Scholar
100.
Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

CAS
PubMed
Google Scholar
101.
Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

CAS
PubMed
Google Scholar
102.
Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

CAS
PubMed
Google Scholar
103.
Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

CAS
PubMed
Google Scholar
104.
Bendikov I, Nadir S, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

PubMed
Google Scholar
105.
Steffek AE, Haroutunian V, Meador-Woodruff JH (2006) Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport 17:1181–1185

CAS
PubMed
Google Scholar
106.
Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ (2008) D-Amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 13:658–660

CAS
PubMed
Google Scholar
107.
Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83

PubMed
Google Scholar
108.
Ohi K, Hashimoto R, Yasuda Y, Yoshida T, Takahashi H, Iike N, Fukumoto M, Takamura H, Iwase M, Kamino K, Ishii R, Kazui H, Sekiyama R, Kitamura Y, Azechi M, Ikezawa K, Kurimoto R, Kamagata E, Tanimukai H, Tagami S, Morihara T, Ogasawara M, Okochi M, Tokunaga H, Numata S, Ikeda M, Ohnuma T, Ueno S, Fukunaga T, Tanaka T, Kudo T, Arai H, Ohmori T, Iwata N, Ozaki N, Takeda M (2009) Association study of the G72 gene with schizophrenia in a Japanese population: a multicenter study. Schizophr Res 109:80–85

PubMed
Google Scholar
109.
Opgen-Rhein C, Lencz T, Burdick KE, Neuhaus AH, DeRosse P, Goldberg TE, Malhotra AK (2008) Genetic variation in the DAOA gene complex: impact on susceptibility for schizophrenia and on cognitive performance. Schizophr Res 103:169–177

PubMed
Google Scholar
110.
Goldberg TE, Straub RE, Callicott JH, Hariri A, Mattay VS, Bigelow L, Coppola R, Egan MF, Weinberger DR (2006) The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31:2022–2032

CAS
PubMed
Google Scholar
111.
Ohnuma T, Shibata N, Maeshima H, Baba H, Hatano T, Hanzawa R, Arai H (2009) Association analysis of glycine- and serine-related genes in a Japanese population of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 33:511–518

CAS
PubMed
Google Scholar
112.
Goltsov AY, Loseva JG, Andreeva TV, Grigorenko AP, Abramova LI, Kaleda VG, Orlova VA, Moliaka YK, Rogaev EI (2006) Polymorphism in the 5′-promoter region of serine racemase gene in schizophrenia. Mol Psychiatry 11:325–326

CAS
PubMed
Google Scholar
113.
Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A, Kotaka T, Okahisa Y, Matsushita M, Morikawa A, Hamase K, Zaitsu K, Kuroda S (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

CAS
PubMed
Google Scholar
114.
Yoshikawa M, Shinomiya T, Takayasu N, Tsukamoto H, Kawaguchi M, Kobayashi H, Oka T, Hashimoto A (2008) Long-term treatment with morphine increases the D-serine content in the rat brain by regulating the mRNA and protein expressions of serine racemase and D-amino acid oxidase. J Pharmacol Sci 107:270–276

CAS
PubMed
Google Scholar
115.
Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SH, Dutar P, Epelbaum J, Mothet JP, Billard JM (2009) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.09.001. Epub ahead of print

Attachments
AddThis Social Bookmark Button