methylene blue nadph
Methylene blue stimulates 2-deoxyglucose uptake in L929 fibroblast cells. 2006
Life Sci. 2006 Jan 2;78(6):586-91. Epub 2005 Aug 24.
Louters LL, Dyste SG, Frieswyk D, Tenharmsel A, Vander Kooy TO, Walters L, Whalen T.
FullText
Abstract
Methylene blue (MB), a common cell stain, has been shown to inhibit nitric oxide synthase and guanylate cyclase, which has led to the recent use of MB in nitric oxide signaling studies. This study documents the effects of MB on 2-deoxyglucose (2DG) uptake in L929 fibroblast cells where uptake is controlled by a single glucose transporter, GLUT 1. MB significantly activates cytochalasin B-inhibitable glucose transport in a dose dependent fashion within 10 min. A maximal stimulation of up to 800% was achieved by 50 microM MB after a 45-min exposure. The Vmax of transport increased without a change in the Km, which was accomplished without a significant change in the GLUT 1 content. The reduced form of MB, did not stimulate 2DG uptake and potassium ferricyanide, an extracellular redox agent, prevented both the staining and stimulatory effects of MB suggesting MB is reduced at the cell surface before it enters L929 cells. Phenylarsine oxide did not block cell staining as noted in other cells lines, but it did inhibit both basal and MB-stimulated 2DG uptake. Likewise, methyl-beta-cyclodextrin , an agent used to remove membrane cholesterol, blocked both the staining and stimulatory effects of MB. The AMP analog, AICAR, inhibited rather than activated basal 2DG uptake, and it did not alter MB-stimulated uptake suggesting that AMP kinase activation is not critical to the MB effect. Wortmannin, an inhibitor of PI kinase, had no effect on MB-stimulated 2DG uptake. These data provide additional insight into the acute regulation of GLUT 1 transport activity in L929 cells.
In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b(5) and methylene blue. 2010
CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).
J Alzheimers Dis. 2010 May 12. [Epub ahead of print]
Protective Role of Methylene Blue in Alzheimer's Disease via Mitochondria and Cytochrome c Oxidase.
Atamna H, Kumar R.
The key cytopathologies in the brains of Alzheimer's disease (AD) patients include mitochondrial dysfunction and energy hypometabolism, which are likely caused by the accumulation of toxic species of amyloid-beta (Abeta) peptides. This review discusses two potential approaches to delay the onset of AD. The first approach is use of diaminophenothiazines (e.g., methylene blue; MB) to prevent mitochondrial dysfunction and to attenuate energy hypometabolism. We have shown that MB increases heme synthesis, cytochrome c oxidase (complex IV), and mitochondrial respiration, which are impaired in AD brains. Consistently, MB is one of the most effective agents to delay senescence in normal human cells. A key action of MB appears to be enhancing mitochondrial function, which is achieved at nM concentrations. We propose that the cycling of MB between the reduced leucomethylene blue (MBH{2}) and the oxidized (MB) forms may explain, in part, the mitochondria-protecting activities of MB. The second approach is use of naturally occurring osmolytes to prevent the formation of toxic forms of Abeta. Osmolytes (e.g., taurine, carnosine) are brain metabolites typically accumulated in tissues at relatively high concentrations following stress conditions. Osmolytes enhance thermodynamic stability of proteins by stabilizing natively-folded protein conformation, thus preventing aggregation, without perturbing other cellular processes. Experimental evidence suggests that the level of carnosine is significantly lower in AD patients. Osmolytes may inhibit the formation of Abeta species in vivo, thus preventing the formation of soluble oligomers. Osmolytes are efficient antioxidants that may also increase neural resistance to Abeta. The potential significance of combining MB and osmolytes to treat AD are discussed.
FASEB J. 2008 Mar;22(3):703-12. Epub 2007 Oct 10.
Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways.
Atamna H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, Ames BN.
Methylene blue (MB) has been used clinically for about a century to treat numerous ailments. We show that MB and other diaminophenothiazines extend the life span of human IMR90 fibroblasts in tissue culture by >20 population doubling (PDLs). MB delays senescence at nM levels in IMR90 by enhancing mitochondrial function. MB increases mitochondrial complex IV by 30%, enhances cellular oxygen consumption by 37-70%, increases heme synthesis, and reverses premature senescence caused by H2O2 or cadmium. MB also induces phase-2 antioxidant enzymes in hepG2 cells. Flavin-dependent enzymes are known to use NADH to reduce MB to leucomethylene blue (MBH2), whereas cytochrome c reoxidizes MBH2 to MB. Experiments on lysates from rat liver mitochondria suggest the ratio MB/cytochrome c is important for the protective actions of MB. We propose that the cellular senescence delay caused by MB is due to cycling between MB and MBH2 in mitochondria, which may partly explain the increase in specific mitochondrial activities. Cycling of MB between oxidized and reduced forms may block oxidant production by mitochondria. Mitochondrial dysfunction and oxidative stress are thought to be key aberrations that lead to cellular senescence and aging. MB may be useful to delay mitochondrial dysfunction with aging and the decrease in complex IV in Alzheimer disease.
J Bioenerg Biomembr. 2009 Oct;41(5):457-64.
Amino acids variations in amyloid-beta peptides, mitochondrial dysfunction, and new therapies for Alzheimer's disease. 2009
Atamna H.
Department of Basic Sciences, Neuroscience, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA. hatamna@tcmedc.org
Abstract
Soluble oligomers and/or aggregates of Amyloid-beta (Abeta) are viewed by many as the principal cause for neurodegeneration in Alzheimer's disease (AD). However, the mechanism by which Abeta and its aggregates cause neurodegeneration is not clear. The toxicity of Abeta has been attributed to its hydrophobicity. However, many specific mitochondrial cytopathologies e.g., loss of complex IV, loss of iron homeostasis, or oxidative damage cannot be explained by Abeta's hydrophobicity. In order to understand the role of Abeta in these cytopathologies we hypothesized that Abeta impairs specific metabolic pathways. We focused on heme metabolism because it links iron, mitochondria, and Abeta. We generated experimental evidence showing that Abeta alters heme metabolism in neuronal cells. Furthermore, we demonstrated that Abeta binds to and depletes intracellular regulatory heme (forming an Abeta-heme complex), which provides a strong molecular connection between Abeta and heme metabolism. We showed that heme depletion leads to key cytopathologies identical to those seen in AD including loss of iron homeostasis and loss of mitochondrial complex IV. Abeta-heme exhibits a peroxidase-like catalytic activity, which catalytically accelerates oxidative damage. Interestingly, the amino acids sequence of rodent Abeta (roAbeta) and human Abeta (huAbeta) is identical except for three amino acids within the hydrophilic region, which is also the heme-binding motif that we identified. We found that huAbeta, unlike roAbeta, binds heme tightly and forms a peroxidase. Although, roAbeta and huAbeta equally form fibrils and aggregates, rodents do not develop AD-like neuropathology. These findings led us to propose a new mechanism for mitochondrial dysfunction and huAbeta's neurotoxicity. This mechanism prompted the development of methylene blue (MB), which increased heme synthesis, complex IV, and mitochondrial function. Thus, MB may delay the onset and progression of AD and serve as a lead to develop novel drugs to treat AD.