Cystine/glutamate transporter (SLC7A11/xCT)
Amino Acids Transporters

Author: Gianpiero Pescarmona
Date: 15/08/2019

Description

Cystine/glutamate transporter is an antiporter that in humans is encoded by the SLC7A11 gene.

The SLC7A11 gene codes for a sodium-independent cystine-glutamate antiporter that is chloride dependent, known as system Xc- or xCT. It regulates synaptic activity by stimulating extrasynaptic receptors and performs nonvesicular glutamate release. This gene is highly expressed by astrocytes and couples the uptake of one molecule of cystine with the release of one molecule of glutamate. The dimer cystine gets taken up by glial cells and the monomer of cystine, cysteine, is taken up by neurons.[citation needed] The expression of Xc- was detected throughout the brain with higher expression found in the basolateral amygdala and the prefrontal cortex. The inhibition of system Xc- has been found to alter a number of behaviors, which suggests that it plays a key role in excitatory signaling.

SLC7A11

Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. 2019

  • Abstract
    Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is an epigenetic mark generally associated with transcriptional activation, yet the global functions of H2Bub1 remain poorly understood. Ferroptosis is a form of non-apoptotic cell death characterized by the iron-dependent overproduction of lipid hydroperoxides, which can be inhibited by the antioxidant activity of the solute carrier family member 11 (SLC7A11/xCT), a component of the cystine/glutamate antiporter. Whether nuclear events participate in the regulation of ferroptosis is largely unknown. Here, we show that the levels of H2Bub1 are decreased during erastin-induced ferroptosis and that loss of H2Bub1 increases the cellular sensitivity to ferroptosis. H2Bub1 epigenetically activates the expression of SLC7A11. Additionally, we show that the tumor suppressor p53 negatively regulates H2Bub1 levels independently of p53's transcription factor activity by promoting the nuclear translocation of the deubiquitinase USP7. Moreover, our studies reveal that p53 decreases H2Bub1 occupancy on the SLC7A11 gene regulatory region and represses the expression of SLC7A11 during erastin treatment. These data not only suggest a noncanonical role of p53 in chromatin regulation but also link p53 to ferroptosis via an H2Bub1-mediated epigenetic pathway. Overall, our work uncovers a previously unappreciated epigenetic mechanism for the regulation of ferroptosis.

Histone H2B monoubiquitination: roles to play in human malignancy. 2015

  • Abstract
    Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20-RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy.

ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. 2017

  • Activating transcription factor 4 (ATF4) is a critical mediator of metabolic and oxidative homeostasis and cell survival. ATF4 is elevated in response to diverse microenvironmental stresses, including starvation, ER stress damages and exposure to toxic factors. Here we show that ATF4 expression fosters the malignancy of primary brain tumors (WHO grade III and IV gliomas) and increases proliferation and tumor angiogenesis. Hence, ATF4 expression promotes cell migration and anchorage-independent cell growth, whereas siRNA-mediated knockdown of ATF4 attenuates these features of malignancy in human gliomas. Further experiments revealed that ATF4-dependent tumor promoting effects are mediated by transcriptional targeting the glutamate antiporter xCT/SCL7A11 (also known as system Xc-). Thus, xCT is elevated as a consequence of ATF4 activation. We further found evidence that ATF4-induced proliferation can be attenuated by pharmacological or genetic xCT inhibition and ferroptosis inducers such as sorafenib, erastin and GPx4 inhibitor RSL3. Further, fostered xCT expression promotes cell survival and growth in ATF4 knockdown cells. Moreover, increased xCT levels ameliorate sorafenib and erastin-induced ferroptosis. Conversely, ATF4 knockdown renders cells susceptible for erastin, sorafenib and RSL3-induced ferroptosis. We further identified that ATF4 promotes tumor-mediated neuronal cell death which can be alleviated by xCT inhibition. Moreover, elevated ATF4 expression in gliomas promotes tumor angiogenesis. Noteworthy, ATF4-induced angiogenesis could be diminished by ferroptosis inducers erastin and by GPx4 inhibitor RSL3. Our data provide proof-of-principle evidence that ATF4 fosters proliferation and induces a toxic microenvironmental niche. Furthermore, ATF4 increases tumor angiogenesis and shapes the vascular architecture in a xCT-dependent manner. Thus, inhibition of ATF4 is a valid target for diminishing tumor growth and vasculature via sensitizing tumor cells for ferroptosis.

xCT and p53

AddThis Social Bookmark Button