TSH
Pituitary Hormones

Author: Gianpiero Pescarmona
Date: 03/01/2010

Description

Thyroid-stimulating hormone (also known as TSH or thyrotropin) is a peptide hormone synthesized and secreted by thyrotrope cells in the anterior pituitary gland which regulates the endocrine function of the thyroid gland.

TSH is a glycoprotein and consists of two subunits, the alpha and the beta subunit.

The α (alpha) subunit (i.e., chorionic gonadotropin alpha) is nearly identical to that of human chorionic gonadotropin (hCG), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The α subunit is thought to be the effector region responsible for stimulation of adenylate cyclase (involved the generation of cAMP).11 The α chain has a 92-amino acid sequence.
The β (beta) subunit (TSHB) is unique to TSH, and therefore determines its receptor specificity. The β chain has a 118-amino acid sequence.

THE GENE

DatabaseLink
HGNCACADM
Uniprot"URL":

Protein Aminoacids Percentage

GLHA and TSHB have no Trp --> no cell proliferation

TSHB mRNA is linked to cholesterol metabolism in adipose tissue. 2017

  • Abstract
    Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-β (TSHB) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N-stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/β administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human
Attachments
AddThis Social Bookmark Button