sars-cov2 replication and temperature
Cheap and simple, could it get even cooler? Mild hypothermia and COVID-19, 2021
Abstract
Purpose
The pathophysiology theories of COVID-19 attach the injury of target organs to faulty immune responses and occasionally hyper-inflammation. The damage frequently extends beyond the respiratory system, accompanying cardiovascular, renal, central nervous system, and/or coagulation derangements. Tumor necrosis factor-α (TNF-α) and interleukins (IL)-1 and − 6 suppression may improve outcomes, as experimentally shown. Targeted therapies have been proposed, but mild therapeutic hypothermia—a more multifaceted approach—could be suitable.
Findings
According to evidence derived from previous applications, therapeutic hypothermia diminishes the release of IL-1, IL-6, and TNF-α in serum and at the tissue level. PaCO2 is reduced and the PaO2/FiO2 ratio is increased, possibly lasting after rewarming. Cooling might mitigate both ventilator and infectious-induced lung injury, and suppress microthrombi development, enhancing V/Q mismatch. Improvements in microhemodynamics and tissue O2 diffusion, along with the ischemia-tolerance heightening of tissues, could be reached. Arrhythmia incidence diminishes. Moreover, hypothermia may address the coagulopathy, promoting normalization of both hypo- and hyper-coagulability patterns, which are apparently sustained after a return to normothermia.
Conclusions
As per prior therapeutic hypothermia literature, the benefits regarding inflammatory response and organic damage might be seen. Following the safety-cornerstones of the technique, the overall infection rate and infection-related mortality are not expected to rise, and increased viral replication does not seem to be a concern. Therefore, the possibility of a low cost and widely available therapy being capable of improving COVID-19 outcomes deserves further
hypothermia+and+COVID-19+vaccination
hypothermia+and+COVID-19
...............