Genetic Evidence for High-Altitude Adaptation in Tibet., 2010
- Tibetans have lived at very high altitudes for thousands of years, and they have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. These phenotypes are clearly the result of adaptation to this environment, but their genetic basis remains unknown. We report genome-wide scans that reveal positive selection in several regions that contain genes whose products are likely involved in high-altitude adaptation. Positively selected haplotypes of EGLN1 and PPARA were significantly associated with the decreased hemoglobin phenotype that is unique to this highland population. Identification of these genes provides support for previously hypothesized mechanisms of high-altitude adaptation and illuminates the complexity of hypoxia response pathways in humans.
Milano, 14 mag. (Adnkronos Salute) - Riescono a vivere sul tetto del mondo senza manifestare alcun sintomo del 'mal di montagna' che, ad alta quota, non risparmia neppure gli scalatori più allenati. Nel Dna dei tibetani si nasconde un pugno di geni, per la precisione 10, che permettono a questo popolo di resistere agli effetti dell'aria rarefatta. Geni esclusivi che hanno a che fare con la gestione dell'ossigeno da parte dell'organismo, e che risultano assenti nel genoma di altre popolazioni (per esempio gli abitanti delle Ande) pur avvezze all'atmosfera montana. A svelare il segreto dei tibetani sono gli scienziati americani dell'università dello Utah, autori di uno studio pubblicato su 'Science'. Il team Usa ha analizzato il Dna estratto da campioni di sangue prelevato in 75 villaggi tibetani a 4.500 metri d'altezza. In collaborazione con un gruppo di colleghi dell'università cinese di Qinghai, i ricercatori hanno quindi confrontato il genoma dei tibetani con quello di popolazioni residenti a bassa quota in Cina e Giappone. Hanno così scoperto che i tibetani possono contare su un 'tesoretto' di 10 geni peculiari, due dei quali controllano i livelli ematici di emoglobina (la 'vettura' proteica che trasporta l'ossigeno nel sangue), evitando l'eccesso di globuli rossi tipico di altre popolazioni residenti ad alta quota."Per la prima volta abbiamo individuato i geni che spiegano questo meccanismo di adattamento", sottolinea Lynn Jorde dell'University of Utah School of Medicine di Salt Lake City. Questo studio, aggiunge Josef Prchal dello stesso ateneo, potrà contribuire allo sviluppo di terapie contro i disturbi più o meno gravi legati all'altitudine.
Genetic Variants in EPAS1 Contribute to Adaptation to High-Altitude Hypoxia in Sherpas. 2013
- ABSTRACT Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1) gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388) in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.