PLANT DESCRIPTION
Turmeric is a rhizomatous herbaceous perennial plant of the ginger family, Zingiberaceae, native to tropical South Asia.
ACTIVE MOLECULES DESCRIPTION
These compounds are ......
CLASSIFICATION
- AA
- BB
INDICATIONS
PHARMACOKINETICS
MOLECULAR MECHANISM
PHARMACOGENOMICS
SIDE EFFECTS
TOXICITY
RESISTANCE
DEPENDENCE AND WITHDRAW
J Food Sci. 2011 Apr;76(3):H80-9. doi: 10.1111/j.1750-3841.2011.02042.x.
Attenuation of fatty liver and prevention of hypercholesterolemia by extract of Curcuma longa through regulating the expression of CYP7A1, LDL-receptor, HO-1, and HMG-CoA reductase., 2011
Yiu WF, Kwan PL, Wong CY, Kam TS, Chiu SM, Chan SW, Chan R.
Source
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Abstract
The extract of Curcuma longa, better known as turmeric, was orally administered to experimental rats that were fed a high-cholesterol diet to investigate whether it could regulate plasma lipids and cholesterol levels and possibly improve hepatic conditions. With turmeric supplements, rats showed a significant decrease in total plasma cholesterol and low-density lipoprotein cholesterol but an increase in high-density lipoprotein cholesterol when compared with rats that were fed a high-cholesterol diet alone. Fatty liver developed in hypercholesterolemic rats with the high-cholesterol diet treatment, and this condition was markedly improved when rats were provided with turmeric supplements at 100 mg/kg or 300 mg/kg of body mass. The turmeric treatment resulted in a significant decrease in the total amount of hepatic lipid. Histological staining of liver tissues with Sudan III and hematoxylin showed that rats fed with a high-cholesterol diet alone had more and larger granular fat bodies than rats having turmeric extract supplementation in their high-cholesterol diet. Reverse-transcription polymerase chain reaction was used to assess the expression levels of enzymes involved in fat metabolism and cellular homeostasis in experimental rat livers. The results showed that rats fed a high-cholesterol diet supplemented with turmeric extract had a significant increase in the expression of cholesterol 7 α-hydroxylase, hemeoxygenase 1, and low-density lipoprotein receptors but a significant decrease in 3-hydroxy-3-methyl-glutaryl-CoA reductase level when compared with rats fed a normal or high-cholesterol diet, showing that turmeric prevents hypercholesterolemia and the formation of fatty liver by the modulation of expressions of enzymes that are important to cholesterol metabolism. PRACTICAL APPLICATION: Turmeric may be considered a functional food for regulating plasma cholesterol levels and preventing the development of fatty liver in people who frequently consume a high-cholesterol diet.
Early diet influences hepatic hydroxymethyl glutaryl coenzyme A reductase and 7alpha-hydroxylase mRNA but not low-density lipoprotein receptor mRNA during development., 1998
- Plasma cholesterol levels increase after birth, and to a greater extent in breast-fed versus formula-fed infants. This increase is believed to be due to the high fat and cholesterol content of the infant diet, but little is known about the effects of early diet on the expression of proteins involved in regulating cholesterol metabolism. This study examined changes in the expression of hepatic proteins regulating cholesterol metabolism during development. Newborn piglets were fed sow milk or one of four formulas for 18 days. The formulas had similar levels of palmitic acid (16:0) as in milk, supplied as palm olein oil with 16:0 esterified predominantly to the sn-1,3 position or as synthesized triglyceride (TG) with 16:0 esterified mainly to the sn-2 position of glycerol, each with no cholesterol (<0.10 mmol/L) or 0.65 mmol/L cholesterol added. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of mRNA levels was used to assess the effects of diet on hepatic hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase, low-density lipoprotein (LDL) receptor, and 7alpha-hydroxylase (C7H). LDL receptor mRNA levels showed no appreciable difference between milk- and formula-fed piglets. However, the levels of HMG-CoA reductase and C7H mRNA were higher (P < .05) in all formula-fed versus milk-fed piglets, irrespective of the formula TG source or cholesterol content. The lower levels of HMG-CoA reductase and C7H mRNA in milk-fed piglets were accompanied by higher (P < .05) plasma total, high-density lipoprotein (HDL), and apolipoprotein (apo) B-containing cholesterol. These studies show that the levels of hepatic HMG-CoA reductase and C7H mRNA, but probably not LDL receptor mRNA, are altered by early diet.